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S ABSTRACT

rhe refractive index change in a collisionless gas is evaluated from the

otark shifts of the rotational energy levels that arise from the polarizability

anisotropy. For the limit of an extremely short-duration excitation, a multi-

level coherent effect results in delayed refractive index bursts. Both sta-

tionary and transient responses of this birefringence to an optical field are

considered for symmetric top molecules, with particular emphasis on the special

case of linear molecules.

I. INTRODUCTION

The birefringence induced by a uniform electromagnetic field in a fluid

composed of anisotropic molecules arises primarily from the reorientation of



the molecules due to their interaction with the field through the molecular

electric dipole moment I and the anisotropy of the static polarizability.2

The present work is restricted to the rotational response of polar and non-

polar molecules excited by short optical pulses for which the interaction is

primarily through the polarizability anisotropy. Though the permanent dipole

interaction dominates for frequencies of the applied field ranging from dc to

microwave, at higher frequencies it plays a diminishing role. In liquids,

this rolloff of the rotational response with increasing frequency results from

a damping of the rotational motion due to viscous interaction with neighboring

molecules. For gases, collisional or inertial effects are responsible for

such a rolloff. Consequently, for both liquids and gases, at optical fre-

quencies the interaction through the permanent dipole moment is extremely weak.

Molecular reorientation resulting from the interaction through the polar-

izability anisotropy depends on the square of the electric field, so that even.

for optical frequencies there are low-frequency components that produce a

significant rotational response 2 and hence induced birefringence. This non-

linear optical birefringence has been treated for liquids by a generalization

of Debye's classical theory of molecular rotation.1, 3 The result shows that

the angular distribution of the molecules achieves thermodynamic equilibrium

in a characteristic time that is 1/3 the viscous relaxation time deduced by

Debye for polar molecules. This characteristic time, typically of the order

of tens of picoseconds, is much larger than the mean time between molecular

collisions (collision tiie).

In gases for which the collision time is much greater than the rota-

tional period of the molecules, quantization of the rotational motion is

important. Nevertheless, when the gas interacts with a smooth light pulse

having a duration much longer than the collision time, thermodynamic equilibrium
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is maintained just as in liquids. For this case, the classical thermodynamic

approach employed by Bloembergen and Lallemand3 is a good approximation.

The primary concern of this paper is in the nonequilibrium situation,

i.e., birefringence in gases induced by optical disturbances shorter than the

collision time. The gas is thus considered to be "collisionless," and the

momentum associated with the molecular rotation must be considered explicitly.

We first deduce a nonequilibrium induced refractive index change for

linear molecules from the quartic and higher order Stark shifts of the rota-

tional energy levels evaluated from time-independent perturbation theory.

Such an approach is strictly valid for an interaction with optical pulses which,

although less than the collision time in duration, are longer than the inverse

of the fundamental rotational transition frequency. However, even for a much

shorter excitation, the transient response of the gas during the excitation is

in many cases of experimental interest quite well approximated by this station-

ary theory. The lowest order nonlinear refractive index change which is directly

proportional to the square of the electric field intensity is tabulated for!

several gases composed of linear molecules or symmetric top molecules. These

range from 4 x 10 (stat volt/cm)-2 (mole/cm3 )-1 for H2 at 350 K to 2 x 10-10

(stat volt/cm)- 2 (mole/cm3)- 1 for CS2 at 3200 K. Analytic expressions for the

refractive index change in both the high-temperature limit and the low-tempera-

ture limit are given. Saturation of this refractive index change for high field

intensity is also discussed.

When the optical pulses are shorter than both the collision time and the

inverse of the fundamental quadrupole transition frequency, the molecular rota-

tional response cannot follow the excitation instantaneously. Hence the refrac-

tive index change has an explicit time-dependence and can persist subsequent to

excitation. For such an ultra-short excitation, the refractive index change is
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deduced from the density matrix equations for the molecular rotation. For a

gas composed of linear molecules, it has already been shown that after excita-

tion with a single light pulse a periodic recurrence of'the birefringence should

result. These recurrences, which are due to quantum interference, can have an

extremely short duration since many rotational levels can contribute. The indi-

vidual echoic bursts should be separated by a time given by 1/4Bc, where B is

the rotational constant of the molecules in wave numbers and eventually should

decay away due to collisional and Doppler effects.

In the present paper, this explicitly time-dependent refractive index change

has been investigated more extensively. In particular, we consider the transient

refractive index change during the presence of the optical excitation which in

many situations is approximated well by the stationary results. The influence

of the excitation pulse width, the molecular rotational constant, and the gas

temperature on the amplitude and the duration of the refractive index bursts is

also considered in detail. In addition, the results are generalized to include

symmetric top molecules.

The paper is divided into seven sections. In the following section, the

Hamiltonian describing the interaction between molecules possessing a linear but

anisotropic polarizability, and an optical field is considered. In section III

the time-independent perturbation calculation of the quartic and higher order

Stark shifts of the rotational energy levels of linear molecules is given and

the induced refractive index change for a gas composed of such molecules is de-

termined. In § IV a general expression for the lowest order time-dependent

non-linear refractive index change for gases composed of symmetric top molecules

is derived from the density matrix representation of the rotational states. In

§ V, we determine the stationary refractive index change for symmetric top mole-

cules as.a limit of the time-dependent expression obtained in § IV and compare
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this result with that for a linear molecular gas. In § VI, the time-dependent.

behavior of symmetric top molecules is investigated and the special case of

linear molecules is discussed in detail. In the final section, the possibility

of detecting the echoic refractive index bursts, its application, and integral

properties of the time-dependent refractive index change are discussed.

II. THE PERTURBATION HAMILTONIAN FOR LINEAR POLARIZABLE MOLECULES

In this section, we define the Hamiltonian that describes the interaction

between the rotational energy levels of linear molecules with an electric field

oscillating at optical frequencies. The interaction is assumed to arise through

the anisotropic polarizability and the optical intensity which is, in general,

time-varying.

Linear molecules are particularly easy to treat since the polarizability

is characterized by only two components - a1 , the polarizability along the

molecular axis, and a , that perpendicular to the molecular axis. The change

in the potential energy of the rotational states produced by the interaction

of the molecules with the radiation field is a function of Aa = ait- -a , the anisot-

ropy, and 8, the angle between the molecular symmetry axis and some fixed direc-

tion in space. The latter is chosen to be the direction of the.component of

the angular momentum which commutes with the square of the magnitude of the total

angular momentum vector.

For a linearly polarized optical field propagating in the z-direction, the

electric field is written in the form:

= 2o( exp[i(wt - kz)] + c.c.

where a is a unit vector specifying the polarization direction of the fieldx

and c.c. represents the complex conjugate of the first term. In this case, ax
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is chosen as the projection axis for the commuting component of the angular

momentum vector. Eo(t,z), the electric-field amplitude is assumed to vary

slowly in time (3Eo/at << w) and in space (aEo/3z << k). In all cases, the

reaction of the medium on the field is neglected. Consequently,

E (t,z) = Eo[t - k/w z], where the propagation constant k is equal to w/c, c

being the speed of light in the gas.

The perturbing Hamiltonian for such a linearly polarized field is

H 1 - +1 +
H' aE E>cos2e --- <E * (2)

2 .
2

in which <1 * E> is the average over an optical cycle of the square of the

electric field amplitude or Eo(t,z)E*(t,z)/2. Such an average results since

only the low-frequency term proportional to the time-averaged intensity of the

electric field can appreciably perturb the molecular rotational energy states.
+ +4.

The angular response of the molecules to the torque at frequency 2w of <E * E>

is extremely weak because of molecular inertia.

If the optical pulse is circularly polarized and propagating in the z-

direction, the plane containing the electric field vector is defined by the

mutually orthogonal unit vectors a and a . The electric field vector can
x y

be written in the form

= [ e i t - k z ) (a + ia) + .c. . (3)
2/2 x y

For this polarization, the direction of propagation az is also chosen as the

direction of the commuting component of the angular momentum. The perturbation

Hamiltonian, for this case, is

1 1
H' -- a<E * E>sin 26 - <E * E> .(4)

4 2

-6-



III. STATIONARY REFRACTIVE INDEX CHANGE FOR GASES

COMPOSED OF LINEAR MOLECULES

In many of the experiments anticipated, the intensity of the optical excita-

tion is expected to vary negligibly for times much shorter than the period de-

termined by the transitions between the most highly populated rotational levels

of the molecule. The refractive index change induced during excitation with the

optical pulse is then dependent primarily on the electric-field intensity and

not explicitly on time. A stationary solution of the Schroedinger equation is

quite adequate for this portion of the response. This considerably simplifies

the calculation and allows a simple estimate of the refractive index response

for particular molecular gases.. The influence of saturation due to a high laser

field intensity is also more easily treated in the absence of an explicit time

dependence.

The intensity dependent optical index of refraction n = no + n2 < > +

+ +2 % 3
n <E.E> + n6 <E.E> can be obtained from the energy change, AW induced by the

presence of the electric field. Since 47r N A is the susceptibility, where
a<E'E>

N is the number density, 1

n =[ - 47 N AW (5)

<E <EE>

assuming a dilute gas. The energy change AW is obtained from the Stark shifts of

the rotational energy levels of the molecules.

There are two limiting situations which should be distinguished. The first

occurs for optical pulses much longer than the collision time. The presence of

collisions assures that the population distribution of the Stark shifted energy

levels is Boltzmann - labeled the thermodynamic equilibrium case. In Appendix

B, it is shown that both the quadratic and the quartic Stark shifts contribute
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to the coefficient n2, which to a good approximation is given by the usual classi-

cal expression3 4rN (Aa)2

45 kTn
o

The second case is based on an absence of molecular collisions and thus is

valid for optical pulses much shorter than the mean collision time. For this

case, which is the primary concern of the present paper,the population of each

shifted rotational level is frozen to the value determined by the initial zero

field Boltzmann distribution. The total energy change due to the Stark shifts

is then

S((EO) M/kT)

AW =J= M=-JEJM e (6)z

(0)where E ( ) is the unperturbed rotational energy eigenvalue corresponding to a
J,M

particular angular quantum number J and its projection M along the chosen fixed

0 . -E(0)/kT
JIM hBc

axis. Z is the partition function J (2J+l) e , and n =kT-. EJ,M is
J=0

the perturbed rotational energy eigenvalue corresponding to the unperturbed

Hamiltonian plus the interaction Hamiltonian of Eq. (2) or (4).

The appropriate solutions of the time-independent Schroedinger equation

for the Hamiltonian of Eq. (2) or Eq. (4) are the spheroidal wave functions.5

Calculation of the corresponding perturbed rotational energy eigenvalue EJ,M

presents severe difficulties and has not been expressed analytically for an

arbitrary field strength. The usual perturbation expansion, which is useful when

the electric field is weak, is expressed as

EM = hBc( + K2  + . . .) - a <E E> (7)
JM -82 2
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with K the perturbation expansion parameter, 1/2 Aa<E * E>/hBc and A hBc is the
0

unperturbed energy eigenvalue J(J+l) hBc. Values for A1, X2' X3, ... in terms

of increasing numbers of algebraic terms, as obtained from the standard per-

turbation approach are tabulated in Ref. (5). These can only be used as a start-

ing point for the refractive index calculation. Considerable effort is involved

in combining the factors and in simplifying the resultant expressions.

If Eq. (7) is substituted into Eq. (6), AW for the collisionless case can

be expressed as

hBcn N.(n) K'

<AW> = n (8)

J -J (J+) hBc
where the sums N(n) = .e-J(J+)n, and = kT

J=0 M=-J

The first three coefficients in the nonlinear refractive index expression,

obtained from Eqs. (8) and (6) are

n 2rN N (n)Aa 2 /Zn (9a)
2 kTn 2

n4 = 2kThBcn 3

n 6  4 N (n)Aa4/Zn (9c)
kT(hBc)2n°

Considerable simplification occurs if sum rules over the projection auantum

number Mfor the coefficients X. of the various orders in the perturbation ex-1

pansion can be obtained. We thus wish to consider the pertinent aspects of

the perturbation theory more deeply and in particular to outline the calculation

of these.
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For this, the collisionless case,.the nonlinear refractive index change is

independent of the quadratic Stark shift hBCX 1K. However as pointed out earlier

and in Appendix B this can contribute to the coefficient n2 after collisions

have significantly thermalized the population among the perturbed states.

For both linear and circular polarization the quadratic shifts, which

respectively are 6'7

W = KA hBc 1 a<E * > 2J(J+1) - 2M2 - 1
1 2 (2J-1)(2J+3)

AW 1 Aa<t E> 2J(J+1) + 2M2 - 2 (10b)
1 4 (2J-1)(2J+3)

indicate that each rotational level is shifted down in energy in the presence of

an optical field (Figs. (1) (2)) since the induced molecular polarization in the

direction of the field for a molecule in any state is positive. Furthermore,

the average of this negative quadratic Stark shift, over the quantum number M.

of the rotational sublevels, is independent of the rotational level quantum num-
+J

ber J since the sum rule Al= - J(2J+l) (J+l) is valid. Thus each level (J) con-
M=-J

tributes equally to the macroscopic linear polarizability (a j+ 2ca)/3 per molecule.

This decrease in rotational energy indicated by the quadratic Stark shift

is quite in contrast with that which results from a permanent dipole interacting

with a low-frequency field, which for comparison is displayed to the left of

Fig. (1). In its rotational ground state, the permanent dipole moment tends to

align along the direction of the applied electric field and the interaction energy

is negative. On the other hand, in states for which M = 0, J # 0, the permanent

dipole moments spend more time oriented in opposition to the electric field;

hence the interaction energy is greater than zero and the energy levels are shif-

ted up. For states with M 0 0 in addition to this, a component of the torque is
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present which tends to align the molecules alohg the direction of the electric

field. Hence, the levels can be shifted either up or down. As a result aside

from the ground state, the energy of each rotational level J averaged over the

quantum number M is not changed due to the quadratic Stark shift. Consequently,

the influence of the permanent dipole moment on the linear polarization of a

gas in thermodynamic equilibrium arises entirely from the ground state.1

Obtaining the nonlinear collisionless refractive index coefficient n2 of

Eq. (9a) necessitates a calculation of the third term in Eq. (7) hBcX2K2 which is

the quartic Stark shift in rotational energy. The perturbation result con-

sists of two contributions which arise from a coupling of the J,M rotational

energy level to the two neighboring rotational states satisfying AJ = ±2, AM = 0,

as determined by the selection rules for the cos 2 dependence of the induced

dipole moment. This contribution to the induced energy shift of the rotational

state J,M can be interpreted as a mutual repulsion of these coupled states.

After carrying out the tedious algebraic multiplication and factorization re-

quired to combine and simplify the two separate terms given in Ref. (5) one

can express the quartic shift as

AW = hBcK2 1 = hBcK 2  M4P(J) - M2 Q(J) + R(J)(11)
2 c (2J-3)(2J-1) (2J+1)(2J+3) (2J+5)

where

P(J) = 80J3 + 120J2 + 172J + 66

Q(J) = 96J 5 + 240J 4 + 88J 3 - 108o2 + 68J + 60

R(J) = 16J 7 + 56J6 + 12J 5 - 110J 4 - 44J3 + 72J2 + 22J - 6
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This is the most important term in the series expansion of the energy shift

due to the optical field. In Fig. (2), in which the energy levels of several

of the lower rotational states are plotted as a function of the perturbation

Parameter K, the curvature near K = 0 gives the quartic Stark shift. This can

be either positive or negative depending upon the particular energy state.

Although a relatively complicated expression, the sum of the quartic Stark

shifts over the projected quantum number M, which enters into the most important

nonlinear coefficient n2, is particularly simple. This can be conveniently ob-

tained from Eq. (8) and is expressed as

F (J) = = (12)
M=-J 2J60 -1)2 (2J+3)

Higher order terms in the perturbation expansion are necessary to describe

the rotational energy level shifts for optical intensities such that K >> 1.

Computer multiplication and factorization programs were employed to express the

next two orders, X3 and X4, in the form included in Appendix A, which is con-

venient for deducing the sum rules. It will be apparent that many more terms

are required for an adequate description of such a saturated case, except for

the low-temperature limit when only the ground state is significantly populated.

This presents major computational difficulties which have not been pursued.

13 and X4 considerably simplify when the sums over M are taken. If the re-

sults are expanded as a partial fraction expansion one obtains

F3(J) = - 1 1 1 1 + 1
M=-J 210 2J-1)2 (2J+3)2  (2J-1) 4  (2J+3)4

(13)
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F (J)= 1 9 9
M=-J 16(2J-1 2  16(2J+3) 2

59 59 15

4(2J-1) 4  4(2J+3) 4  (2J-1) 6

+ - + . (14)(2J+3) 6 32(2J-3)2 32 (J+5)

Using the sum rules, Eqs. (12) to (14), the sums Ni(n) in Eq. (8) can be

handled with relative simplicitiy, at least numerically. Calculations of

N2 (n), N3 (n), and N4 (n) are shown as functions of n in Fig. 3, along with the

factor Zn.

Particularly simple analytical expressions can be obtained for n2 , n4 ,
and n6 in the low temperature limit (n > 2). The nonlinearity in the refrac-

tive index is then determined solely by the Stark shift of the ground state

and the coefficients of the refractive index change are approximately equal to

n 4TrN (a) 2  
(15a)

2 135 hBen (15a)
o

n 6nN (a) 3 15b)
4 8505 (15b)

(hBc)2no

n 13rN (Aa)4
6 1913625 (hB)3n (15c)

Since n6 is negative, the saturation of the refractive index with an in-

creasing optical field intensity is well approximated by these three coefficients

as illustrated in Fig. 4. The saturated value of 4.9 at K "'50 is close to

the expected value for complete alignment in the direction of the field, which

is 4.2.
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The other extreme, that of the high temperature limit (n < 0.01) is appli-

cable to many molecular gases at room temperature (for CS2 at T = 3000 K,

n = 5 x 10 ). In this limit, Zn 1 and N2 (n) can then be approximated by

X2 which from Eq. (12) is - 1/30. Thus
J=0 M=-J

2rN dc2

n2 30 kTn (16)

This value of n2, which arises entirely from the quartic Stark shifts, is a

factor of 3/4 smaller than the usual thermal equilibrium value,3 which has con-

tributions from the quadratic shift as well (Appendix B).

The similarity of this expression to the thermal equilibrium expression

and in particular to the lack of dependence on the quantized behavior of the

gas suggests that Eq. (16) is, in principle, derivable from a classical des-

cription of the molecular interaction with the field. This calculation appears

to be extremely difficult since the absence of thermodynamic equilibrium implies

that the nonlinear equations of motion for each molecule would have to be solved

explicitly and an orientational average then taken.

Useful analytical expressions for n4 and n6 are much more difficult to

obtain in the high temperature limit. From Eqs. (13) and (14) the sums of the

sixth and eighth order Stark shifts over all the levels are both zero since CF 3(J)
0. J=0

and , F4 (J) are both equal to zero. This is also apparent from Fig. (3).
J=0

Thus in contrast to the case of n2, for which the Boltzmann factor could be

assumed equal to 1 for all terms in N2(n) the deviation of the Boltzmann factor

from unity in N3 (n) and N4(n) must be considered in order to obtain analytical

expressions for n3 and n4. Expansion of the Boltzmann factor in terms of n

results in divergent series in the sums over J and hence is not useful. Due
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to the compensating Stark shifts however, without additional higher order co-

efficients the terms n4 and n6 do not specify the saturated behavior. Hence

we shall not pursue these problems further.

With regards to a more accurate description of the refractive index satura-

ation one might consider a numerical calculation the Stark shifted energy eigen-

values for a strong perturbation. Such calculations have been attempted. How-

ever these have been restricted to rotational levels for J : 10 which is in-

sufficient for an evaluation of the nonlinear refractive index.

Stern8 obtained numerical solutions for the energy levels by solving for

the roots of an implicit continued fraction expansion of the energy eigenvalues.

However, these roots are also extremely difficult to determine for large values

of the perturbation parameter (K >> 20). These results have been extended by

Curl et al. by combining a numerical diagonalization of the approximated

Hamiltonian matrix with the results of the continued fraction expression. In

this manner, they are able to evaluate the perturbed energy for some lower energy

levels for values of K up to 500.

The Stark shifts for a few rotational energy levels obtained both by the

power series approximation including perturbation terms up to X4 and numerically

by Curl et al. are plotted in Fig. 2. For K 6 10, for which the power series is

quite close to the results obtained numerically, the motion of molecules can be

described as "rotational." As the perturbing energy is increased, however, the

molecular rotation is hindered and eventually the motion is more properly described

as "oscillatory."1 0  Groups of energy levels merge, each group being character-

ized by a librational quantum number. (This behavior is indicated on the right-

hand side of Fig. 2.) It is apparent that the limiting value of the refractive

index is that obtained by total alignment of molecules, n = 1 + 27TNli . This is
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indicated directly in Fig. 2 since the slope of the energy levels asymptotically

approach -1 for extremely high electric-field intensity.

The most important coefficient to consider experimentally is n2 since it pro-

vides the strength of the various possible nonlinear interactions. This coeffi-

cient is given in Table 1 for several gases of potential interest. For CO2, CS2,

C2 H2 and N20, n2 is well approximated by Eq. (16) at 3000 K.

The coefficient for hydrogen at 350 K and deuterium at 400 K can be approx-

imated by the low-temperature limit if thermal equilibrium is assumed. Nuclear

statistics have been taken into account in the calculation for N2 and 02(11). Even

though these two molecules have relatively small moments of inertia, the results

do not differ appreciably from those evaluated from Eq. (5). The index coeffi-

cients for HCl and HBr vapors at room temperature were determined by using N2(n)

and Zn from Fig. 3 in conjunection with Eq. (9).12

IV. FIRST ORDER DENSITY MATRIX CALCULATION OF TIME-DEPENDENT REFRACTIVE

INDEX CHANGES OF GASES COMPOSED OF SYMMETRIC TOP MOLECULES

In many cases pulsed optical or infrared excitation of vapors composed of

anisotropically polarizable molecules will produce a refractive index change which

is quite well described by the stationary results during the excitation. In addi-

tion to this adiabatic portion of the response, however, quantum mechanical inter-

ference occurs. This is appreciable if the frequency spectrum of the pulse inten-

sity overlaps many rotational transitions and results in an index of refraction

subsequent to the excitation. For many di-and tri-atomic molecular vapors excited

by pulses typical of the mode locked glass laser an intermediate regime in which

both the adiabatic and quantum interference effects are present is expected.

In the present section we wish to introduce two generalizations of the previous

results to treat the experimentally expected behavior for a variety of vapors.

Firstly, the time dependence in the nonlinear refractive index change will be

-16-



treated by utilizing the density matrix equations for the rotational motion. The

calculation will, however, only be carried out for the lowest order in the opti-

cal intensity so that saturation will not be considered. Secondly, the rotational

inertia along the figure axis as well as that perpendicular to the figure axis

will be considered to include the more general class of symmetric top molecules.

This additional inertia is expressed through additional terms in the unperturbed

Hamiltonian. As for the special case of linear molecules, the polarizability is

still specified by two components - oal , parallel to the figure axis and a i

:perpendicular to the figure axis. As a result, the directionally-dependent, per-

turbing Hamiltonian is the same as for linear molecules.

In section V the stationary limit of the general time dependent susceptibility

change is obtained. This will provide n2 for symmetric molecules. The presence

of the additional states as specified by the quantized component h A along the

figure axis considerably complicates the perturbation calculation for the station-

ary Stark shifts. Although the quartic Stark shifts are obtained relatively easily,

terms of any higher order are extremely cumbersome. In addition, numerical cal-

culations of the highly perturbed rotational states have apparently not been

attempted thus far.

In section VI we specialize the discussion to the temporal development of the

quantum interference exhibited by the collection of evolving superposition states

induced by a sufficiently short excitation.

To proceed with the calculation of the refractive index change for symmetric

top molecules we denote the element of the density matrix between two rotational

states specified by the quantum numbers I, M, A and J, M, A by PIJ In analogy

to linear molecular gases, the quantum numbers M and A need not be considered

explicitly. However, it must be kept in mind that whenever a sum arises it is

to be taken over M and A as well as J.

-17-



The equations of motion for the density matrix are 13

atIJ  I,KH K ,J HI K,J) (17)

where H = Ho + H' is the total Hamiltonian, H' being specified by expression

(2) or (4), depending on the polarization. From this point on, we will

specifically discuss linear polarization.

The matrix elements of Ho, the unperturbed energy eigenvalues, are6'11

HoA = hBcJ(J+1) + hc(A - B)A2  (18)
J,A

where A and B are, respectively, the rotational constant about the figure

axis and that about the axis perpendicular to the figure axis.

The matrix elements of the perturbing Hamiltonian are

H' = -1/2 Aa<E * E> QIJ. The QI,J' which are the matrix elements for

the operator cos2O, can be obtained by using the table given by Cross et a. 1 4

These matrix elements are

1 (J2-2) (J2-A2)[(J-1) 2 -M2][(J-1) 2 -A2  1/2 (19a)
QJ,J-2 = J(J-l) (2J-1) (2J-3 ) (2J+l)

1/2
1 [(J+22 -M2] [(J+2) 2 -A2 ][(J+1) 2 -M2 ] [(J+1) 2 -A 2] (19b)

J,J+2 (J+l) (J+2) (2J+3) (2J+1)(2J+5)

Q =(J 2-M2 ) (J 2 -A2 ) [+ (J+l) 2 -M2 ] [ (J+l) 2 -A2 ] M2A2  (19c)

J'J J 2 (2J-1)(2J+l) (J+1) 2 (2J+1)(2J+3) J 2 (J+1) 2

where A and M are not included explicitly as indices on the Q terms since they

remain unchanged during a transition.

The refractive index can be determined from the induced susceptibility which

is obtained from the trace of the product of the operator n(Aa cos 2 a + aj) and the

density matrix obtained from Eq. (17).
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The zeroth order of approximation gives the linear refractive index no ,

which depends only on the values of the density matrix elements prior to the

optical disturbance. One readily finds that no  T (all + 2a) in agreement

with the theorem of spectroscopic stability
15 and the previous result from

the quadratic Stark shifts.

The lowest order values for the off-diagonal components of the density

matrix and the corresponding nonlinear refractive index change can be obtained

immediately by replacing the QI,J in the results for linear molecules in

Ref. 4 by those of Eq. (19). Since the quantum number A as well as M does

not change during a rotational transition, the only difference in the final

results is an additional sum over the quantum number A. Thus the expressions

for pJ+2,J and An (Ref. 4) are rewritten:

J J = [RJ J t exp(-ijt')<E • E>dt exp(iJt) (20a)J+2,J = i +2,J j
o

J,J+2 PJ+2,J (20b)

an(t) T Im e <E E>dt (21)

no J=0 '
0

where to is an initial time for which <E.E> can be assumed to be zero. Tj is

the double sum

J

TJ = RJ+2,J J+2,J"a (22)
M,A= -J

with wj = 4fBc(2J+3) and Im, the imaginary part of the term inside the bracket.

As previously,
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RJ+2,J (0) +2) /21 QJ+2,JA. (23)
= $- J J+2,J j

where p(0) is the initial zero field thermal equilibrium value of the diagonal
J,J

component of the density matrix:

-H /kT
J,A

p(O) e (24)
J,J m J

E 1 (2J+l)e-HJ,Ai
J=0 A=-J

In the above expression for Tj, the sum over M can be explicitly carried

out, giving

S(Aa)2  J (0) (0) 1 [(J+l) 2 -A2 ][(J+2) 2-A2 ] (25)
A=J JJ J+2,J+ (J+1)(J+2)(2J+3)

This obviously reduces to the results for a linear molecular gas when

A =0. 4

V. STATIONARY REFRACTIVE INDEX CHANGE FOR

SYMMETRIC TOP MOLECULAR GASES

To evaluate the stationary, intensity-dependent refractive index from

Eq. (21) , it is assumed that <E * E> is slowly varying with respect to

-imwt + > r
e J and that <E E> is zero for t' = t. Integrating Eq. (21) by parts

and neglecting time derivatives of <E * E>, one obtains for any given time t:

o T
An - 4 <E * E> (26)

no J=0 WJ

which is a generalization of Eq. (9) obtained for linear molecules using

the time-independent approach.
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In the low-temperature limit, Eq. (26)reduces to (15a) sir.ce only the

level with the lowest energy E(J = 0, A = 0, M = 0) is populated. In the

high-temperature limit, no analytic expression analogous to Eq.(15) can be

deduced with assumptions corresponding to those employed for linear molecules.

The expression for the induced refractive index change in this case can be

conveniently written:

An = F(T) kTn <E *E> . (27)
30 kTn

The coefficient F(T), in general, depends on temperature and on the rotational

constants A and B. Numerical calculations have been made for the CH3Cl

molecule, which has polarizabilities all= 5.42 x 10-24 esu and a = 4.14 x 10-24

esu,16 and rotational constants A = 5.090 cm-1 and B = 0.4434 cm .17 Results

show that the coefficient F(T) for this molecule is 0.8434 at T = 2960 K and

0.8461 at T = 10000 K.

For temperatures high enough for F(T) not to vary significantly

(1 10000 K for CH3Cl), the refractive index change depends on A and B only

through their ratio. This dependence is indicated in Fig. 5. The coeffi-

cient F(T) decreases with decreasing A/B to approximately 0.4291 when

A/B = 1/2, which is the value for an "ideal ring molecule." Such a decrease

in the value of F(T) with decreasing A/B results from the combined effect of

the decrease in QI,J with increasing A and the decrease of the unperturbed

rotational energy with .a decreasing A/B. The latter implies that the states

with high A (and hence low values of QI,j ) are weighted more heavily in the

sum over A in Eq. (26).

The coefficient n2 and the factor F(T) of several symmetric top molecular

gases are given in Table II.
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VI. COHERENT TIME-DEPENDENT REFRACTIVE INDEX CHANGES IN

GASES COMPOSED OF SYMMETRIC TOP MOLECULES

The rotational response of a molecular gas to an optical pulse exhibits

a nonnegligible explicit time dependence if the pulse duration is not too

long. For symmetric top molecules, such will be the case for durations less

than or equal to the inverse of the fundamental quadrupole transition fre-

quency, which is 1/6Bc. The spectral content of the pulse envelope then over-

laps the rotational transition frequencies and a significant number of transi-

tions can occur among the Stark shifted rotational states evaluated in § II.

These transitions are, of course, not taken into account in the stationary

perturbation calculations.

The transitions result in a net absorption of energy.by the gas, leaving

the rotational population distribution, and hence the refractive index, per-

turbed after the passage of the pulse.

Such a perturbation can also be interpreted in terms of a transient

development, during the optical excitation, of superpositions of pairs of

rotational states. At the termination of the excitation, the percentage

of each state composing the pair ceases to change, while the relative

phase between the two states continues to evolve at a constant rate equal

to the transition frequency between the two.

The nonlinear refractive index change subsequent to the optical excita-

tion is described by a collection of such steady-state superposition states,

each of which is thus evolving with a well-established phase relationship

with respect to the remaining superposition states. The collection is

expressed by a Fourier sum that has components at the quadrupole transition
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frequencies wJ = 4TBc(2J+3). Such a sum is obtained from Eq. (21) by

extending the upper limit to infinity, this being justified since <t • E>

is zero for all t subsequent to excitation.

The Fourier component for a particular frequency wj is the product of

the Fourier transform of the optical intensity at frequency wj and the

coefficient TJ defined by Eq. (25). For linear molecules for which the sum

over A can be dropped and A set to equal to zero, the Fourier sum over the

rotational frequency spectrum has been shown to represent short periodic

bursts in the refractive index, spaced in time by intervals of 1/4Bc.4

A complete analysis of the excited refractive index change, in particular

one that includes the response during excitation with the optical pulse and

the strength of the subsequent short bursts as a function of pulse width,

requires a numerical integration of Eq. (21). Figure 6 illustrates the over-

all features of the time-dependent refractive index change. This particular

example pertains to CS2 vapor (A - m, B = 0.1091 cm-1 1 7 for an optical ex-

citation assumed to have a Gaussian electric field profile given by

E = A exp (-2t2/T 2) (eiwt ' + e-it (28)

For a relatively long pulse (5 psec or longer), the initial refractive index

change closely follows that given by the stationary quartic Stark shift (hence

the pulse shape), and the strength of the quantum interference is small com-

pared to that of this initial response. With a reduction in the pulse width

(1 psec or shorter), the refractive index change occurring simultaneously

with the excitation diminishes. The initial response gradually attains the

time profile expected of the burst due to quantum interference. When pulse

width T becomes much less than the width of the bursts in refractive index,

the entire index change is completely described by the sum over the fully

developed or steady-state superposition states.
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For symmetric top molecules, the particular Fourier series describing only

the refractive index subsequent to excitation by a Caussian field described by

Eq. (28), as determined from Eq. (21), is

An(t) = 3/2NTA2 T exp(-m T2/16)sin wjt (29)
J-0

The development of the burst in refractive index can be traced by initially

considering the evolution of only one of the.suiiperposition states represented

by this series. For simplicity, a delta function excitation is assumed

(exp[- 2 /16] = I,A2 = 2/7) and the J = 0 rotational state is considered at

t = 0. A certain number of the molecules initially in this state will be forced

by the optical pulse into a superposition with the J = 2 state, in particular

the one for which M = 0. The wave function of the molecule having undergone

such a change can be written as1 8

= r- [0]e 2 4)+ [2]e 2 4 (30)

where [0] stands for the wave function for J = 0 and [2] stands for the wave

function for J = 2, M = 0. The former is proportional to the zeroth-order

and the latter to the second-order ordinary Legendre polynomial. One observes

that this superposition of the wave functions gives the proper form for the

off-diagonal components of the density matrix elements in Eq. (20) and the
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phase evolves at a rate wo as stated earlier. The probability density func-

tions I(t) 2 for times t = 0, w/2wo, 7r/o, and 3r/2wo, subsequent to excitation

and the differences jl(t)12 - I*(0) 12, which are proportional to the induced

anisotropy, are shown in Fig. 7.

At t = 0, immediately after the perturbation is applied, the two states

are superposed in quadrature. This leads to the most uniform angular distri-

bution of the total probability amplitude and implies that the molecules re-

main in a random orientation just after the perturbation. However, the state

evolves so that, at a time equal to 1/4 the transition period, the probability

amplitude is highly peaked in the direction of the electric field, i.e., the

molecules tend to be oriented along the direction of the field. After another

fourth of a period, the probability amplitude is distributed uniformly once

more. Three-fourths of a period after the disturbance, the probability func-

tion .is peaked again, but in a direction perpendicular to the applied field.

We see from Figs. (7e) and (7f) that the net anisotropy.of the probability

density function at w t = 3f/2 is equivalent to that at w t = i/2, but in the

perpendicular direction. The wave function returns to the original superposed

state at the end of a full period. This behavior occurs periodically as ex-

pressed by this sinusoidal evolution of the superposition state.

In general, the state with angular momentum quantum numbers J,M will be

superimposed with a state with quantum numbers J+2,M or J-2,M and any of these

superposed states behaves in a manner completely analogous to the one discussed

above. In particular, the evolution of the superposed state consisting of a
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linear combination of the eigenstates of J and J+2 can be represented by the

phase factor exp (iwmt) in Eq. (21).

In general, the width and shape of the bursts in the refractive index

change depend on the width of the excitation pulse as well as the spectral

content of the coefficients Tj. When the pulse is very short so that the

Fourier spectrum is essentially constant over the dominating rotational

transition frequencies, the spectral content of the refractive index is lim-

ited by the spectral width of TJ. The relative amplitude of Tj as a func-

tion of J is plotted in Fig. 8 for CS2 vapor at 2960K. The effective rota-

tional levels range roughly from J = 20 to 70, which gives a bandwidth of

11 -1
Af = 4Bc(70-20) = 6.5 x 10 sec . Hence the width of the complete burst,

covering both the positive peak and the negative peak, is approximately

-12
AT = 1/Af = 1.5 x 10 sec. The full width of either peak at half the

-12
maximum amplitude is about 1/3 of this value or 0.5 x 10 sec.

For the opposite extreme, that of a pulse having a spectral width for

which only relatively few of the thermally populated energy levels are ex-

cited, the width of the burst is roughly proportional to the pulse width.

Both extremes in excitation pulse width, extremely short or extremely

long, produce a small number of superposed states and consequently quantum

interference strength. The most efficient utilization of a burst of optical

energy occurs when it is contained in a time duration that is roughly the

inverse of the frequency of the dominating rotational transitions. Since

for large J, for linear molecules, Tj is approximately proportional to

J2 exp (-J2hBc/kT), the level with the maximum value for this factor is

given by Jmax = (kT/hBc) / 2 , which for CS2 at 296
° K is approximately 44. 4

The optimum pulse width is the inverse of 4Bc J
max
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T h = 5 x 10-12(BT)-1/2 (31)
op 4Bc LkTJ

A numerical calculation over a temperature range 1000 to 12000 K for different

-12 -1/2
values of B gives T = 4.5 x 10 (BT) in close agreement with this

op

approximation expression. Figure 9, in which the peak amplitude of the re-

fractive index in CS2 1/4 Bc after excitation is plotted as a function of

excitation pulse duration, illustrates the range about the optimum pulse

width which can be tolerated without decreasing the strength of the echo

significantly.

Computed refractive index profiles due to quantum interference induced

by Gaussian-shaped light beams in CS2 vapors and CH3C1 vapors at 296 K are

plotted in Fig. 10 for various pulse widths. One notes that the normaliza-

tion constant for the latter is Ans = F(T)[2rN(aa)2/30kTn ], with F(T) = 0.8434.

Comparing Fig. (10a) with (10b), we see that the time profiles are

almost the same for the linear and symmetric top molecules. They are both

antisymmetric since the fundamental frequency of the Fourier components in

both cases is 2B and the function is odd. On the other hand, for the

symmetric top, the normalized refractive index change can be larger than

unity in contrast to that of the linear molecule. For CH 3C vapor, it is

1.08 at room temperature. However, since An = 0.843 An , the amplitude
s m

is still smaller than that of a linear molecule having the same rotational

constant B and the same polarizability anisotropy Aa. In addition, for

the symmetric top molecule, the level of maximum contribution tends to have
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a high J value and hence an optimum pulse width shorter than that of the

linear molecule. Consequently, the width of the burst is also shorter for

the symmetric top molecule. (This width cannot be computed from Eq. (31).)

Table III lists the optimum pulse widths and echo periods for several

gases at 296 0 K. The widths have been obtained from Eq. (31) for linear

molecules and numerically for the remaining ones. CS2 and benzene appear

particularly favorable for initial investigations. They both have large

anisotropies and relatively small rotational constants and require optimum

pulse widths that could be achieved with present mode-locked lasers.

Interference with the rotational coherence will arise from collisional and

Doppler effects. Significantly populated excited vibrational levels as well

as the centrifugal stretching parameter could also interfere with the rota-

tional coherence, provided the rotational constants vary significantly.

For CS2 , the rotational constant is hardly effected by centrifugal

stretching (for the level with J = 200, the increase in rotational constant is

0.01%). In addition, the rotational constant of the vibrationally excited mole-

cules is barely different from that of the unexcited ones. Hence, though 11%

of the molecules are in the first excited state, the induced refractive index

should not be changed appreciably. Note that the lowest vibrational levels

of benzene is above the highly populated rotational levels. In addition, the

small centrifugal stretching parameters coupled with a small rotational con-

stant and a large anisotropy in polarizability make this particularly favor-

able as well.
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VII. INTEGRATED STRENGTH AND DETECTION OF THE REFRACTIVE

INDEX RESPONSE

Although the amplitude of the refractive index change subsequent to opti-

cal excitation is highly dependent on the optical pulse duration, the time

integration of the entire induced refractive index response depends only on

the energy of the exciting pulse and not on its duration.

From expression (21), the total area AT is given by

A 4N -T Im e J iWJ
nT n o J <E E> e dt'd (32)

For generality, <E > is assumed to have an arbitrary time profile, although

Gaussian-shaped pulse envelopes are reasonably justified for most Q-switched

and perhaps mode-locked laser pulses. Rather than obtaining a delayed refrac-

tive index burst that is antisymmetric about its center of gravity, Eq. (21)

shows that the asymmetric part of the optical pulse gives rise to a superposed

contribution that is symmetric about the center of gravity. For example, Fig. 11

illustrates a sequence of bursts induced in CS2 gas at room temperature by an

optical excitation with both symmetric and antisymmetric components of the in-

tensity as specified by

<E * E> = Ao(t) + Ae(t) (33a)
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where

A (t) = C, exp[-4(t+r/4)2/T 2] - exp[-4(t-T/4)2/T2] (33b)

Ae (t) = C2 exp[-4t 2/T2] (33c)

and C1 and C2 are constants.

It is evident that the net contribution to the total time integrated re-

fractive index change is zero subsequent to t = (8Bc)-1 for the portion of the

excitation which is an even function of t and subsequent to t = (4Bc)- I for

that which is an odd function of t. Thus we need consider only times less

than these for the two contributions, respectively. Changing the order of

integration for each of these in Eq. (32) and explicitly carrying out the in-

tegration with respect to t, one obtains

-447NCN 8 A 4B

1 1

A =0 A (t')si A (t')dt + A (t')c t'
ne

SJ= e (34)

If the pulse width T is shorter than (8Bc)-1, where T is the full width at half

intensity, the upper limit of the integration can be extended to infinity..

From symmetry, the second set of bracketed terms vanishes after the integration.

The total area reduces to

COT 
AT o J= W JJ - E> dt (35)

which is just the total area that would be obtained from a stationary calcu-

lation.
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The upper integration limits can be taken without loss of generality as

1/8Bc + n/2Bc and 1/4Bc + n/2Bc, respectively, for even and odd components of

the excitation, where n is a positive integer. Thus, Eq. (34) is applicable

-l
for pulses of duration (8Bc) or larger. However, for pulses having such a

long duration, the strength of the quantum interference is negligible and

the refractive index is given very well by the stationary result.

The experimental detection of the transient portion of the refractive index

change should, according to the above, roughly depend only on the total energy

of the optically exciting pulse. This is true for a detection technique that

produces a signal linearly proportional to the birefringence2 and a probe pulse

of the same duration as the birefringence pulse. The recent technique for prob-

ing short-duration birefringence employed by Duguay and Hansenl9 involves the

square of the birefringence for which the detected signal will increase with

a decrease in the exciting pulse width up to the point at which the birefring-

ence becomes independent of the pulse width.

The detectability of the delayed bursts in refractive index for several

molecular species is tabulated in Table IV. As for Table III, the optimum

length of the excitation pulse has been estimated numerically for symmetric

top molecules and from Eq. (31) for linear molecules. The maximum relative

phase shift between the electric field components perpendicular to and paral-

lel to the polarization direction of the excitation pulse and produced by

the refractive index burst has also been listed as A4. This has been evalu-

ated for a length of 1 f, at a wavelength of 0.53p, and for a peak power den-

sity of 500 MW/cm2 for the excitation. The resultant fraction of energy

which would be transmitted through an analyzing polarizer has been estimated

assuming the probe pulse to be centered on the peak of the refractive index

profile for the 1 m length and, in addition, that it is much shorter than the
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duration of the refractive index profile. Consequently, this is the optimum

value that would be obtained. If the probe pulse is of the order of the

width of the echoic response then one would expect this to be reduced by

approximately a factor of 2.

The resultant signal-to-noise ratios that can be achieved for the rather

conservative optical intensity chosen are encouraging. This has been obtained

as the ratio of the above percentage of the energy of the probe pulse which is

transmitted by the crossed polarizers due to the echoic response to that which

would be transmitted in the absence of the echoic response. The latter is

primarily determined by the extinction ratio of the polarizer pair, which can

-6
be of the order of 10-6 . Scattering due to the vapor and the window of the

sample cell have not been included but should not present any difficulty.

VIII. CONCLUSIONS

The sequence of refractive index bursts, which is essentially the rota-

tional response of the molecule to a delta function excitation, should be

useful for various spectroscopic measurements. The spacing between the bursts

provides a direct measurement of the rotational constant of symmetric top

molecules. This method would be particularly convenient for relatively large

organic molecules that possess a center of inversion, such as pyrene. For

conventional spectroscopic approaches, broadening would cause the rotational

transitions to merge. In the time domain, however, the bursts are diminished

in amplitude due to Doppler or collisional effects but should still be de-

tectable.. This result together with the fact that molecules with large moments

of inertia exhibit a relatively long (=3 x 10- 9 sec for pyrene) delay before

the appearance of the refractive index change and an optimum pulse width that
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is longer (=2 x 10-12 sec for pyrene at 2960 K) provide an advantage.

The transient response in the refractive index should also provide a use-

ful means of studying collisional phenomena in gases. Even the factor of 3/4

reduction of the collisionless stationary value of n2 with respect to the

thermodynamic equilibrium value should be significant enough to be easily

detected.
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APPENDIX A: LINEAR MOLECULAR STARK SHIFTS

The eigenvalues associated with the spheroidal wave functions have been

given in a power series expansion.
5 To evaluate the refractive index, it is

convenient to rewrite the coefficient for each power of the perturbation

parameter in terms of a common denominator and to arrange the numerator in a

descending series in terms of powers of quantum number M. The first three

terms are given in § III; X3 and LA are, respectively,

Q6M 6 + Q M4 + Q2M 2 + Qo
2 (Ala)

3 (2J-5)(2J-3)(2J-1) 5(2J+1)(2J+3) 5 (2J+5)(2J+7)

R8 M8 + R6 M6 + R4M
4 -+ R 2 M2 + R 0

16(2J-7)(2J-5)2 (2J-3)3 (2J-1)7(2J+1) (2J+3)7 (2J+5) (2J+7)2(2J+9)

(Alb)

where

Qo = -4(140J9 + 720J8 + 688j7 - 952j 6 - 1758J5

- 335J4 + 798J 3 + 576J 2 + 91J - 15)

Q2 = 8(320J9 + 1440J8 + 1600j7 - 1120j6 - 2172J5

+ 730J 4 + 2106J3 + 909J2 + 735J + 315)

Q4 = -4(1792J
7 + 6272J6 + 11040J 5 + .1192 0 J 4

+ 6656J3 + 1200J 2 + 6834J + 3465)

Q6= .16(288J
5 + 720J4 + 2576J 3 + 3144J 2 + 2410J

+ 705)

-34-



R = 2621440J 2 2 + 28835840J21 + 67502080J2 0 - 334233600J 1 9

o

- 1652391936J18 + 406880256J 1 7 .+ 12640935936J 1 6

+ 11465981952J 1 5 - 47151794176J 1 4 - 86929668096J1 3

+ 60776768000J 12 + 283966432256J1 1 + 179093012352J1 0

- 331641182336J 9 - 597523865568J 8 - 39584051328j7

+ 562799872768J6 + 305661829696J 5 - 144966710848J4

- 144459953280J 3 - 23823704448J2 + 1681374240J

- 123832800

R2 = - 132120576J20 - 1321205760J19 - 2986868736J 1 8

+ 10772545536J17 + 55153655808J1 6 + 26351763456J 15

- 230151454720J 14 - 364095176704J1 3 + 213326028800J 12

+ 709242830848J1 1 - 39055316992J1 0 - 538931681280J 9

+ 423846592000J8 + 536931813376J7 - 796268822912J 6

- 1151804954752J5 - 44866063232J4 + 732693962880J3

+ 534689631360J 2 + 153715363200J + 15812496000

R4 = 858783744J 1 8 + 7729053696J 1 7 + 16658989056J1 6

- 41919971328J1 5 - 235709202432J1 4 - 303193325568j13

+ 358526828544J1 2 + 1907821019136J11

+ 2395260653568J1 0 - 1479590572032J9

- 5776834200576J8 - 1235455438848J7 + 5280868948224J6

+ 1601948246784J 5 - 3438094991424J4 - 1925582232960J3

- 1295953634304J 2 - 1226174604480J - 338863694400
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R6 = - 1499463680J16 - 11995709440J1 5 - 28251258880J1 4

+ 12166103040J 1 3 + 263258767360J12 + 875588485120J11

+ 691770327040310 - 2847928647680J9

- 6429128499200J8 - 2067620659200J7

+ 5728792217600J6 + 6081225021440J
5 + 2478926763520J 4

+ 1276743582720J3 + 4306275239040J2 + 3691965916800J

+ 877688784000

R = 770179072J1 4 + 5391253504J 1 3 + 15384051712J 1 2

8

+ 22218014720J11 - 103817510912J1 0 - 594261147648J9

- 647287250944J8 + 1000544829440J7

+ 34485043834886 + 4334596040704J
5

- 611972320768J4 - 6087058191360J 3

- 6531288018048J 2 - 3111137285760J - 554513752800

The last three terms, which give rise to the nonlinear refractive index change,

were discussed in the text. The second term gives the total quadratic Stark

shift for each J level. The expectation value is

-- (2J+l)eJ(J+l) n

<W > =hBcK J=0 3 1AaE 2 (A2)

F,(2J+1)e
J=0

Thus each J level contributes equally to the linear refractive index,

1 + 2 TN(al + 2a).
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APPENDIX B: OPTICALLY-INDUCED REFRACTIVE INDEX FOR

THERMAL EQUILIBRIUM

The intensity-dependent portion of the nonlinear refractive index change

arising from the Stark shifts of the rotational levels, which are assumed to

be in thermo-dynamic equilibrium at temperature T, can be deduced from an

average of the perturbed energy. We wish to obtain the high-temperature limit

and show that it is equivalent to that given by the classical calculation.

The partition function including the quartic Stark terms is given by

o= +J -EJ/kT L/kT (a J,Mp + J',MP2) (B)

J=O M=-J

where

E = hBcJ(J+l)

P = a E2
2

aJ,M = X1 (J,M)

X2 (JM)

J,M hBc

The terms Al(J,M) and X2 (J,M) are given in § III.

Following the procedure used by Debye, 1 a is expanded in powers of P.23

Defining the summations
E

Co = e kT

J,M

E (B2)

a2 = J e kT
J,M JM
JM
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o ' = 2BJ,Me
J,M (B2 Cont)

E

,, = 2 Me kT

J,M

and

1
a =a' + 0

2 = 2 kT 2

the result to terms in P2 (E 4 ) terms is

a1 0 2

a = 0 + - P + 2p2 (B3)
o kT 2kT

Retaining only the significant components up to the second order. in P,

the Helmholtz free energy is

= -kT tog a

=-kT tog ao - P -  2 ( 2] IB4)

where

01 _ 1

L 3' o 9

and in the high-temperature limit,

2 2 1
0 30 kT

2J+1 -Ej/kT

" E (2J-1) (2J+3) e
2 2 (1)J=0 (BS)
o 15 15 -Ej /kT

0 (2J+l)e
J=O
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The last term in Eq. (B5) is a function of temperature and approaches

zero as T goes to infinity. A numerical calculation shows that at

hBc/kT=5 x.10 -4 (CS2 at room temperature) the entire term is approximately

10- 5. The first term in Eq. (B4) corresponds to the unperturbed potential

energy of the molecules. The second term

<AWl> = E (B6)

contributes to the electric-field independent dielectric constant. The

last set of terms gives

<AW > - 2 1 ( E2 )2 (B7)
2 45 kT 2

which implies that the nonlinear index of refraction coefficient n2 is

2rN 2  / (Aa)2  (B8)2 kTno (B8)

where N is the number of molecules per unit volume. This is exactly the

classic result.3

It is interesting to observe that whereas the classical partition func-

tion contains only the term (Aa)E 2; the quartic Stark shift, an energy

term propotional to E4 is necessary to evaluate n2 quantum mechanically.
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APPENDIX C: QUARTIC STARK SHIFT CALCULATED FROM THE

TIME-DEPENDENT PERTURBATION OF THE DENSITY MATRIX

It is instructive to evaluate the stationary value of the quartic

Stark shift from the internal energy (expectation of the Hamiltonian).

This necessitates, in addition to the first order perturbed values of

the off-diagonal components of the density matrix, the perturbed values

of the diagonal components. Working from the density matrix equations,

it is sufficient to assume that the electric-field intensity is applied

slowly with respect to the inverse of the rotational transition frequencies

of the molecules. In this manner, the terms involving transitions among

the Stark shifted levels do not enter. Thus, we consider a perturbing

Hamiltonian with the following conditions:

H' = - 2 aET(t) cos 2 0 (C1)

T(t) = 0 , t < 0

dt > 0 , dm << (wa)mT(t) t > 0dt - dtm j

where m is any positive integer. Substituting this perturbation function

in Eq. (Cl) and using successive partial integration, the integral in the

equation can be expanded in a series involving the above time derivatives.

Thus

i j_ t' dT(t') WJ_-2,t'
I HM J-2 M T(t')e dt'

Jo J,J-2 dt' = D,-2 I 2J-2 JJ-2

d2T(t') eiJ-2t,

dt'2

iw3  + (C2)
J-2
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Where QJ,J-2 is defined in Eq. (15) and DM  = a<E2 >/2 x Because2JJ-2 Because

of the last condition in Eq. (C2), this expression can be approximated by the

first two terms, and the off-diagonal elements become

(1) = r (0) (0) T d1(t)J,J-2 J,J-2 IJ,J pJ-2, - (C3)-J J-2 hk2  . (C3)

The perturbation of the diagonal elements, obtained by substituting p(l) for
J,I

the off-diagonal elements into Eq. (13) and integrating, is

p(2) = M  \2[ P (0) t dt')
J,J J,-2 J-J-2 dd, TJt') dt'

J-2

[(0) (0) DJJ -2T(t) (C4)
= J-2,J-2 - J,J h (C4)

J-2

The expectation of the quartic Stark shift, given by the trace of the product
of the density matrix and the Hamiltonian, is given by

CO J DM 2 1 M 12<A -> = [T(t)12 [_jJ-2 D,J+2 1 (0)J=0 M=-J h- JJ (C5)

It can be easily shown that, inside the bracket, the.term with any particular

quantum number J,M is exactly hBK2
2g, the quartic Stark shift given in § III.
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TABLE I. Nonlinear coefficient n2 for collisionless gases composed of linear

molecules.

Temperature, Aa * 1025, B, n2  1012
(OK) esu cm-1 esu/mole

CS2  300 7 5 .0a 0.10 9 2d 171.0

CO2  300 20.3b  0.3902d  12.6

C2H2  300 27.9b  1 .1 7 7d 23.7

N20 300 27.9b  0 .4 1 1 6d 23.7

N2  300 9 .3b 2 .0 0 1e 2.56

02 300 11.4 b  
1 .4 3 8e 3.94

HC1 300 7.4b  10.4 4 e 1.53

HBr 300 9.1b  8 ,3 6 0e 2.35

H2  35 3.02c  5 9 .3 0e 0.434

D2  39 2.92 c  
2 9 .9 0e 0.803

aR. Y. Chiao, E. Garmire, and C. H. Townes, Phys. Rev. Letters 13,

479 (1964)..

bRef. 16.

K. B. MacAdam and'N. F. Ramsey, Phys. Rev. A6, 898 (1972).

dRef. 17.

eRef. 11.
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TABLE II. Nonlinear coefficient n2 for collisionless gases composed of

symmetric top molecules at 2960 K.

A,a B,a a . 102 5,b F(T) n2 * 1012,

cm- 1  cm- 1  esu esu/mole

CH3C1 5.090 0.4434 12.8 0.843 4.27

C2H6  2.538 0.6621 15.1 0.722 5.09

C6H6  0.0948 0.1896 -59.6 0.429 47.0

NH3  6.196 9.444 2.40 0.436 0.0776

aSee Ref. 17.

bsee Ref. 16.

TABLE III. Time separation between refractive index bursts and the optimum

width of the optical excitation at 2960K.

Td = 1/4Bc Top

x10 12 sec x10 12 sec

CS2  76.32 0.80

CO2  21.37 0.42

N20 20.26 0.41

CH3C1 17.02 0.35

C2H6  12.59 0.29

C6H 6  43.98 0.47
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TABLE IV. Detectability of refractive index bursts for gases at 1 atm pressure for a propagation length of

1 m. The peak electric field intensity of the inducing optical pulse is assumed to be 2 x 103 esu, and

the wavelength of the probe beam is 0.53 pm. Ell is the electric-field component of the probe pulse which

is parallel to the electric field of the excitation pulse; EL is that perpendicular to the excitation

pulse field.

Optimum Relative phase Fraction of

Temperature pulse width n2 (T,P), shift of Ell and E1  diode pulse energy

Substance OK 10-12 sec esu/cm 3  A, radian transmitted,(6p/2) 2

CS2  319 0.77 7.2 x 10-15 0.26 0.017

N20 296 0.41 1.07 x 10-15  0.038 3.6 x 10-4

CgH 6  353 0.43 1.60 x 10-15 0.057 8.1 x 10-4

CH3C£ 296 0.37 1.91 x 10- 16 0.0068 1.2.x .10- 15



FIGURE CAPTIONS

Figure 1. The lowest Stark shifted rotational energy levels for a fixed

electric-field intensity. Those arising from a permanent dipole

moment are illustrated on the left-hand side and those arising

from the induced dipole moment are shown on the right-hand side.

The Stark shifts of the rotational levels due to a permanent

dipole moment u are given by6

u2F 2 J(J+l) - 3M2

hBc J(J+l)(J-1) (25J+3

where F is the amplitude of the low-frequency or dc field.

Figure 2. The Stark shifted rotational energy levels arising from the polar-

izability anisotropy plotted as a function of K = Aa<E * E>/(2hBc).

Solid lines indicate the energy shifts obtained from the power

series approximation and dotted lines show that obtained from

numerical calculations. Note that different scales are used

for the low-intensity region and the saturated region.

Figure 3. Nonlinear coefficients N2 (n), N3 (n), and N4(n) and the factor

nZ plotted as a function of hBc/kT.

Figure 4. Saturation of the induced refractive index at low temperatures

for a collisionless gas. An = n-no and K is the perturbation

parameter A- <t*>/hBc.

Figure 5. The dependence of the effective factor F(T) for symmetric top

molecules on the ratio of the rotational constants A and B.

These were evaluated for the high-temperature limit (T = 12000 K,

B = 0.1092cm-1 ) for which F(T) depends only on A/B.
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Figure 6. Theoretically predicted time variation of the refractive index

change induced by a Gaussian-shaped optical pulse in CS2 vapor

at 296 0K. The pulse widths T as defined by Eq. (27) for the

individual curve are (a) T = 5 x 10-12 sec. The curves are

normalized with respect to An = (2HN/30n ) x {(A)2 A2/2kT}
m 0

-10 2 -12
(which is 1.74 x 10 A2/2 esu/mole. (b) T = 1/H x 10- 1 2 sec.

Figure 7. Time evolution for the probability density function 'PI12 ,(where

9 is the wave function) of a state that is the superposition of

the J=0, M=0 and the J=2, M=0 rotational states of a linear

molecule. (a) Polar plot of the rotational wave functions of the

ground state and of the excited state with quantum numbers J=2,

M=0. The moleculer axis is perpendicular to the plane of the

paper. (b)-(d) Probability density functions of a superposition

state at three moments subsequent to an optical impulse excit-

ation; (b) at wt = 0 and wt = r:, Ij12 = (1/8)(5-6 cos 2e+9cos40),

(c) at wt = Tr/2, 1[12 = (1/8)(l+6cos2e+9cos40),

(d) at wt = 3r/2, Ift2 = (l/8)(9-18cos28+9cos4 0). (e) and (f)

Deviation of the probability density functions from that immedi-

ately after the excitation at different moments;

(e) at wt = 7/2, A1 I2 = (3cos 2 0-1)/2.

(f) at wt = 3n/2,A1I 2 . (1-3cos20/2. The refractive index

change contributed by the superposition state is proportional to

Alt1 2 at any given time t.

Figure 8. Amplitudes of the coefficient T for CS2 vapor at .296"K. The

curve is normalized with respect to the maximum coefficient

T , where J = 42.
max
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Figure 9. Normalized peak amplitudes of the refractive index An of the
p

refractive index burst for a time delay 1/4 Bc after excitation

for CS2 vapor at 2960K as a function of the excitation pulse

width (defined by Eq. (24)). The normalization is as for Fig. 6.

Figure 10. Theoretically predicted refractive index bursts induced by

Gaussian-shaped optical pulses. (a) Bursts in CS2 vapor at

2960 K. The normalization is as for Fig. 6. The excitation

pulse widths are (I) T = 0.2 x 10-12 sec, (II) T = 0.8 x 1012

sec, and (III) T = 2 x 10-12 sec, (b) Bursts in CH3C1 vapor at

296 0 K. The normalization constant is Ans  F(T)(2nN/30n o )

[(Aa) 2A2/2kT] where F(T) = 0.843 (equal to 4.27 x 10-
12A2/2 esu/mole).

The excitation pulse widths are (I) r = 0.1 x 10-12 sec, (II)

T = 0.37 x 10-12 sec, and (III) T = 10- 1 2 sec.

Figure 11. Illustration of refractive index bursts induced by an optical

pulse whose intensity is not symmetric about any time. CS2 at

296 0K has been assumed; Anm is the same as for Fig. 6 but with

A2 = C2
2. (I) The contribution to the burst by the portion of the

optical pulse that is an even function of time (Eq. (29c)).

(II) The contribution due to the portion that is an odd function

of time (Eq. (29b) with C1 = 0.4C 2), and (III) the total theoretically

predicted burst.
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